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Chapter 1

Introduction

This manual describes the syntax and static semantics of Larch/Ada, the specifi-
cation language used in the Penelope verification editor for Ada. Earlier versions
of the material contained in this document were combined with motivational ma-
terial and some description of the semantics of Larch/Ada in A Short Introduc-
tion to Larch/Ada-88. That material is now found in (1]. Overviews of Penelope
can be found in [8] and [6]. An introduction to using Penelope is provided in
[4]. This manual is intended for the user who wishes to write specifications and
develop programs using Penelope. It describes informally only the part of the
language that has been implemented. It should not be read as a formal descrip-
tion of a full language for specifying Ada, which we refer to as Larch/Ada, and
which is discussed in [1].

David Luckham's work with Anna (5], inspired the first version of Larch/Ada
and in previous versions of this document Larch/Ada was called PolyAnna,
in honor of that original inspriation. We have adopted the Larch approach
to specification in choosing to separate the specification of theories from the
specification of code [3].

1.1 Specification and proof in Larch/Ada

A Laxch/Ada package or subprogram is specified by annotating its Ada code with
subprogram and other annotations. These annotations contain assertions that
are required to hold in designated program states. In specifications, the states

3



4 CHAPTER 1. INTRODUCTION

of interest are typically the state on entry to a subprogram, and the states
on normal or exceptional exit from a subprogram. The assertions are terms
in first order logic. (The theory of the predefined Ada types, which defines
the predefined operations of Ada, is described in [2j.) Informally, a Larch/Ada
package or subprogram satisfies its formal specification if all the assertions in
the Larch/Ada annotations hold at appropriate control points.

The body of a Larch/Ada subprogram may be further annotated with annota-
tions such as invariant annotations and embedded assertions.

Programmers develop annotated Laxch/Ada programs using the Penelope editor,
which, given the specification of a subprogram, generates preconditions during
program development. (The preconditions are generated incrementally, which
means that every time a programmer makes a change to a program, the precon-
ditions immediately reflect the effects of that change.) The editor also generates
verification conditions (usually one per loop plus one per subprogram body).
The verification conditions are purely logical statements, the proof of which
guarantees that the program satisfies its specification.The Penelope editor needs
constant access to a theorem prover, both to help simplify the incremental pre-
conditions and to prove the verification conditions. We have integrated a simple
proof checker for first order logic into Penelope.

This document describes informally the Larch/Ada annotations and what it
mcan, 1,. an annotatcd program to be correct.

1.2 Larch

As designers of programs to be verified, we often have difficulty writing down a
formal specification that captures the meaning we intend for the program. The
Larch Shared Language is designed to help us write readable formal specifica-
tions. The Larch Shared Language may be used in the specification of programs
written in any language; it is the mathematical component of a specification
language, and it is used to write complex specification concepts and theories
in units called traits. A Larch Interface Language is needed to apply shared-
language concepts to a particular program. Larch/Ada is a Larch Interface
Language for Ada. We refer the reader to Guttag, Horning, and Wing [3] for a
discussion of Larch.

Odyssey Research Associates



1.2. LARCH

The manual presents terms and assertions, a simple trait-like facility in Penelope,
and annotations. Some simple examples are provided.
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Chapter 2

Terms and Assertions

2.1 Terms

The Ada language is designed for computation, not for reasoning. We use Ada
expressions to instruct a machine about what computations to perform. We use
Larch/Ada terms to denote the possible results of such computations.

Terms are used to denote values underlying Ada objects. Such values include
constants (such as 1, 2 , true, etc.) and the result of applying operators to
terms (e.g., 1+x, not P, min(x,y)). Predefined Larch/Ada operators exist for
boolean and integer values, as well as for array and record objects. Larch/Ada
operators are total mathematical functions. Since they are not computationally
defined, they do not execute, terminate or raise exceptions. They simply denote
mathematical values.

Larch/Ada is a sorted language. Just as'each expression in Ada has a type, so
each term in Larch/Ada has a sort. Larch/Ada sorts may be roughly understood
as the the mathematical domains underlying the Ada types. Larch/Ada terms
are sorted. For example, x + true is not permitted. More information about
the sorts and the semantics of terms may be found in [1].

The syntax of terms is:

(term)
true
false

7



8 CHAPTER 2. TERMS AND ASSERTIONS

(integer)
(variable)
(unary operator) (term)
(term) (binary operator) (term)

I (function application)
I (conditional term)
I (modified term)
I (quantified term)

(array term)
(record term)
(skolem term)

An assertion is a boolean term. Assertions are used in specifications, e.g. to

represent input and output conditions for subprograms.

(assertion) --* term

2.2 Constants

The boolean values true and false, as well as the integers, are predefined in

Lach/Ada.

2.3 Variables

(variable) ---
(identifier)

(identifier)
any string of alphabetic/numeric or underscore characters

beginning with an alphabetic character

The meaning of an identifier in a term depends on the context in which it

appears. There are three possibilities. First, the identifier may be a bound

variable occurring in a quantified term. For example, in the term

forall i,j:: b[i~j]=O

the variables i and j are bound. Second, at any point in an Ada program text

the current state associates certain identifiers (those appearing in declarations

Odyssey Research Associates



2.4. UNARY AND BINARY OPERATORS 9

in the current declarative region, for example) with Ada program objects. In
the above example, b may be such an Ada variable. Third, the variable may be
a free logical variable, as in

P or not P.

It may happen that there is more than one possible meaning for an identifier.
In case of conflicts, a free variable refers to the Ada object of that name that is
directly visible in the current state, if any. Otherwise it is a free logical variable.

Note that free logical variables are not permitted in annotations of an Ada
program, although they may occur in traits and proofs.

2.4 Unary and binary operators

(unary operator)
+ I - Iabs j not

(binary operator)
and I or xor ->

= I 1 I I = I > I >=
+ I - I 1 I1 I, modI rem**

Larch/Ada operators are defined corresponding to most of Ada's unary and
binary operators on integers. It is important to remember that they refer to
total mathematical functions and never "fail" or raise exceptions. In cases where
an Ada expression raises an exception, the corresponding Larch/Ada term may
denote a value, e.g. x/0, for which there is no corresponding value in the Ada
type. Examples of unary and binary operators in terms are a+b, x=6 or x>7.
Note that the Ada short circuit control forms and then and or else do not
correspond to any operators of the term language.

The following table summarizes the associativity and precedence of the sup-
ported predefined operators.

Odyssey Research Associates



10 CHAPTER 2. TERMS AND ASSERTIONS

Operator Associativity
AND, OR, XOR left
<, <o > 0 as /0 none
* , -,9 left
unary ,unary -, none

*. /. MOD, REM left
NOT, ABS, ** none

2.5 Function application

(function application) -+
(designator) ((termlist))

(termlist)
(term)
(term) , (termlist)

The user may define mathematical functions and apply them to arguments. The
designator never refers to an Ada function. Thus the same identifier may be
used for an Ada function and a mathematical function without ambiguity. It
is preferable, however, to choose distinct names for mathematical functions in
order to avoid confusion for the human reader.

Predefined functions may also use the function application syntax.

2.6 Two-state terms

A state a is a function that t6 every program object associates a value. We
often use the terminology "the value of a variable (or object) in state a." States
are important because the effects of executing an Ada program can be described
by describing the concomitant changes in the values of program objects, i.e. the
changes in state.

The notion of state can be extended so that a state a associates a value to every
term. The value has the same sort as the term. If a term has free variables
denoting program objects, the only way we can figure out what value that term
denotes is to apply a state to it.

Three different states are of interest in the annotation of an Ada subprogram.

Odyssey Research Associates



2.7. CONDITIONAL TERMS 11

exit The subprogram annotation makes claims about the values of Ada objects
on exit from the subprogram.

entry The subprogram annotation also makes assumptions about values of Ada
objects on entry to the subprogram.

current Other annotations (embedded assertions, loop invariants, etc.) may
make claims about the values of objects in the current state, i.e., the state
at that point in the program.

It may happen that in an exit annotation we wish to refer to the value of a
variable on exit from and also on entry to the subprogram, for example to
say that the subprogram increments the entry value. The reserved word in
designates the value of a variable or term in the entry state.

(modified term) --

in (variable)
in (term)

To specify a sort subprogram, for example, we might write:

type intarray is array (integer) of integer;
procedure sort-array (in out a: intarray);
-- w where
--I out (permutation(a, in a) and sorted(a));

-- end where;

where permutation and sorted come from the theory of arrays.

2.7 Conditional terms

(term)
if (term) then (term) else (term)

The last two subterms must be of the same sort, and the first subterm must be
boolean. If Q and R are boolean terms, then the term if P then Q else R is
equivalent to (P A Q) V (-,P A R).

O4yssey Research Associates



12 CHAPTER 2. TERMS AND ASSERTIONS

The following example shows a boolean conditional term and also an integer
conditional term.

function abs-max (a,b: in integer) return integer;
-- I where
--I in if a>=O then b>=O else b<O;
--I return if a>O then max(ab) else max(-a,-b);
-- end where;

2.8 Quantified terms

(term) -
forall(idlist) ::(term)

I exists (idlist):: (term)
(idlist)

(identifier) I (identifier) (idlist)

The subterm of a quantified term must be boolean. Example:

type intarray is array (integer) of integer;
function array-max (a: in intarray; n: in integer) return integer;
-- w where
-- I return z such that forall i::i>O and i<n -> a[zl>=a[i;
-- I end where;

2.9 Array terms

(array terms) -+

(term) E(termlist)]

I (term)[(termlist)=>(term)]

If a is an array then ali,j] represents the value of a component of a. It is
often useful to represent the value of a if an component is replaced. Suppose
we replace component i of a with v. We can represent the resulting value by
a[i => v].

Odyssoy Research Associates



2.10. RECORD TERMS 13

2.10 Record terms

(record terms) --.
(term) . (termlist)

I (term) E. (termlist)->(term)]

If r is a record then r.f represents field f of r. It is often useful to represent
the value of r if an component is replaced. Suppose we replace component f of
r with v. We can represent the resulting value by r[.f=>v).

2.11 Terms that may be produced by the editor

There axe some terms that are not entered by the user, but may be produced by
the editor. These are hidden Ada variables and skolem functions. A (hidden Ada variable)
is used to represent an Ada variable at some point in the program where that
variable is not visible, e. g., because it has been hidden by a declaration in an
interior declarative region. A (hidden Ada variable) associates a context (declar-
ative region) with a variable name. Contexts are usually very long and hard to
read. Such names can be eliminated, if desired, by avoiding duplicate names.

A skolem function supplies a name for a value returned by a subprogram. Skolem
functions are long and hard to read. They have the form

(skolem function) --

Func<(name for Ada function), (variable)> ((termlist))

Skolem functions usually occur when a subprogram returns a value and its spec-
ification does not explicitly state the value returned. For example,

function return-one (a: in integer) return integer;
-- I where
-- I return z such that z>O and z<2;
-- I end where;

Better:

Odyssey Research Associates



14 CHAPTER 2. TERMS AND ASSERTIONS

function return-.one (a: in integer) return integer;

--Iwhere
-1 return 1;

-Iend where;

Odyssey Research Associates



Chapter 3

A Simplified Trait Facility for
Penelope

In the Larch two-tiered approach to specification, a programmer would naturally
develop in the Larch Shared Language a body of mathematics that he would
then appeal to in Laxch/Ada or other Larch interface language specifications.
Implementation of such an approach implies some way of appealing from the
program specification to the trait, for example a library of traits. In the absence
of any such facility, Penelope provides a very much simplified trait facility. It is
not intended to replace a proper facility for building traits in the Larch Shared
Language, but merely to allow the user to enter into the editor some information
contained in such traits so that he can appeal to it in specification and verification
of his programs.

3.1 Traits

In Penelope the user can enter information from traits above the program text.
The scope of trait information is the entire program. Multiple traits may be
entered. The axioms and lemmas available are simply the union of all the axioms
and lemmas entered in the traits. No checks are provided for consistency, nor is
the user required to show that the lemmas follow from the axioms. In the future
the user will be able to enter Larch traits and the Larch checker will be used to
check the traits for correctness.

15



16 CHAPTER 3. A SIMPLIFIED TRAIT FACILITY FOR PENELOPE

(trait) --
-- I trait (identifier) is
(function definitions)
-- axioms: (labelled-assertions)
-- I end axioms;
-- i lemmas: (labelled-assertions)
-- I end lemas;

3.2 Function signatures

(function definition) --+
-- I introduces (identifier): (signature);

(signature) --+
((idlist)] ->(identifier)

Note that a constant is a nullary function. Currently two functions may not
have the same name. In this future this restriction will be relaxed so that two
functions may have the same name if their signatures are distinct. The user may
not redefine predefined symbols (such as "+" on integers).

3.3 Axioms and Lemmas

Axioms and lemmas are assertions. They may contain free variables but may
not reference Ada variables. They may use the predefined mathematics for Ada
records, arrays, etc. In proofs and in simplification directives the axioms and
lemmas are referred to by their labels.

(labelled-assertion) -
(identifier): (assertion);
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Chapter 4

Annotations

4.1 Subprogram annotations

A subprogram annotation represents a contract between the subprogram and its
callers. The subprogram annotation states what must be true when the subpro-
gram is called (the responsibility of the caller) and what is then guaranteed to
be true if the subprogram terminates. Externally, every caller must show that
the input conditions of the subprogram are satisfied at the point of the call, and
may assume that the exit conditions hold if the subprogram returns. Internally,
the implementation of the subprogram must be such that if the input conditions
hold and the subprogram terminates, then the exit conditions can be proved to
hold.

Note that in the above discussion we do not assume that the subprogram must
terminate. That is, subprogram annotation specifies conditions for the par-
tial correctness of the subprogram, as opposed to total correctness, which addi-
tionally specifies that the program must terminate.

Entry state, exit state, and two-state predicates Recall that in a two-
state predicate subterms of the assertion may be modified by in, and such sub-
terms get their values from the entry state. Other subterms get their values
from the current or exit state. In a subprogram annotation using a two-state
predicate, the entry state is the state on entry to the subprogram, and the exit

17



18 CHAPTER 4. ANNOTATIONS

state is the state on termination (which may be normal or exceptional according
to the annotation).

Assertions embedded in subprograms are also two-state predicates: unmodified
terms get their values from the current state, while terms modified by in get
their values from the state on entry to the subprogram.

Syntax of subprogram annotations Subprogram annotations may follow
subprogram declarations, or may precede the reserved word is in a subprogram
body. Thus, in Larch/Ada:

(subprogram declaration)
procedure (identifier) [(formal part)]
(subprogram annotation)

I function (designator) [(formal part)] return (type mark);

(subprogram annotation)

(subprogram body)
procedure (identifier) [(formal part)]
(subprogram annotation)
is (body)

I function (designator) [(formal part)] return (type mark)
(subprogram annotation)
is (body)

The syntax of the (subprogram annotation) is:

(subprogram annotation)
-- I where
[(side effect annotations)]
[(in annotations)]
[(out annotations)]
(result annotations)]
[(propagation constraints)]
[(propagation promises)]
-- I end where;

Odyssey Research Associates



4.1. SUBPROGRAM ANNOTATIONS 19

4.1.1 Side effect annotations

Syntax:

(side effect annotation) - I- - global (formal part);

The (formal part) lists the global objects read and written by this subprogram.
For example, suppose we wish to implement a stack package for a particular
stack, called my..stack. Mathematics provides us with functions top and pop
that respectively .pick off the top element of the stack and return the rest of
the stack. We may wish to implement a pop-stack function in which the top
element is removed from the stack and returned to the caller. Thus there is a
side effect on my-..stack.

function pop-stack ) return integer;
-- I where
-- I global my-stack: in out;
-- I out my-stack--mathematical-pop(in my.stack);
-- I return mathematical-top(in my-stack);
-- end where;

Note that the parameter names appeaxing in the formal part are the names of
visible global objects. They are called the global parameters or sometimes the
implicit parameters of the subprogram.

A global variable may ocur at most once in the side effect annotations for a
program.

For any fragment of an Ada program, we can determine statically what global
objects are read and written by that fragment. The side effect annotation of a
subprogram must list all objects read or written by the program.

4.1.2 In annotations

Syntax:

(in annotation) -- -- in (assertion);

where the assertion is not a two-state predicate. The only Ada variables allowed
to appear in the assertion are the global or formal parameters of modes in or

Odyssey Research Associates



20 CHAPTER 4. ANNOTATIONS

in out.1 If the in annotation is omitted, that is equivalent to an in annotation
with an (assertion) of true.

The implementor is allowed to assume that, on entry to the subprogram, the
state satisfies the assertion. Users of the subprogram must show that the state
immediately preceding the call satisfies the assertion (when the values of the
appropriate actual parameters are substituted for the formal parameters).

4.1.3 Out annotations

Syntax:

(Out annotation) - -- I out (assertion);

where the assertion is a two-state predicate. Unless preceded by the modi-
fier in, all variables get their values from the exit state. The only Ada variables
allowed to appear in the assertion are those appearing in the formal parts of
the subprogram declaration and the subprogram's side effect annotations. If
the out annotation is omitted, that is equivalent to an out annotation with an
(assertion) of true.

Verification conditions for the subprogram are generated whose truth will guar-
antee that, if the subprogram is called in a state satisfying the in annotation,
and if it terminates normally (i.e. without propagating an exception) , the state
after termination will satisfy the out annotation.

The out annotation can be used to annotate both procedures and functions,
although one must use a result annotation to be able to refer to the value returned
by a function.

4.1.4 Result annotations

Syntax:

(result annotation)
-- I return (identifier) such that (assertion);

'This is a simplification. Some attributes of formal parameters of mode out may be known
on entry, for example A'FIRST when A is an array.

Odyssey Research Associates



4.1. SUBPROGRAM ANNOTATIONS 21

where the assertion is a two-state predicate. The only Ada variables allowed
to appear in the assertion are those variables appearing in the formal parts of
the subprogram declaration and the subprogram's side effect annotation, and
(identifier). The (identifier) may not appear in the (assertion) modified by in,
since it is senseless to talk about the value on entry of the thing returned.

The result annotation may annotate only functions. It is exactly like the out
annotation except that the (identifier) stands for the return value. In principle
the result annotation renders the out annotation superfluous for functions, but
the out annotation may be clearer to a reader in cases where it can be used. If
the result annotation is omitted, that is equivalent to a result annotation with
an (assertion) of true.

We offer a short form result annotation

(result annotation) - -- I return (term);

which is equivalent to

(result annotation)
-- I return (name) such that (name) = (term);

where (name) is an identifier that is not free in (term). Thus the annotation

-- I return x*y;

is equivalent to

-- I return z such that z = x*y;

4.1.5 Propagation constraints

Syntax:

(propagation constraint)
(constraint propagation annotation)

I (sirong propagation annotation)

(exact propagation annotation)

Odyssey Research Associates



22 CHAPTER 4. ANNOTATIONS

Constraint propagation annotation Syntax:

(constraint propagation annotation) ---
-- I raise (exception) [I (exception)...] => in (assertion);

where the (assertion) is not a two-state predicate. All Ada variables in the
assertion take their values from the entry state. The only Ada variables allowed
to appear in the assertion are the global or formal parameters of modes in or
in out.

If the subprogram terminates by propagating any of the exceptions listed, the
entry state must have satisfied (assertion). Verification conditions will be gen-
erated whose truth will guarantee that the subprogram cannot propagate any of
the exceptions listed unless it is called in a state satisfying (assertion).

Strong propagation annotation Syntax:

(strong propagation annotation) -

-- I in (assertion) => raise (exception) [I (exception)...);

where the (assertion) is not a two-state predicate. All Ada variables in the
assertion take their values from the entry state. The only Ada variables allowed
to appear in the assertion are the global or formal parameters of modes in or
in out. 2

When the entry state satisfies (assertion), the subprogram must raise one of the
exceptions listed, if it terminates.3 Therefore, strong propagation annotations
for disjoint sets of exceptions must have mutually exclusive assertions in order
for the program to be proved correct. Verification conditions will be generated
whose truth will guarantee this exclusivity, and will guarantee that every time it
is called in a state satisfying (assertion) it will propagate one of the exceptions
listed if it terminates at all.

'In the propagation annotations, in acts as a syntactic marker, not as a modifier.
3This is subject to the assumption that the subprogram does not terminate by propagating

storage-error or numeric-error, and that no undetected numeric overflow occurs during
execution of the subprogram.
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Exact propagation annotations

(exact propagation annotation)
-- I raise (exception) [I (exception)...] <=> in (assertion);

or

(exact propac ition annotation) --
-- I in (assertion) <=> raise (exception) [I (exception)...];

where the (assertion) is not a two-state predicate. All Ada variables in the
assertion take their values from the entry state. The only Ada variables allowed
to appear in the assertion are the global or formal parameters of modes in or
in out.

This annotation is an abbreviation for both the strong propagation annotation
and the constraint propagation annotation with the same list of exceptions and
(assertion). The same interpretations and restrictions apply; the intent is that
(assertion) be a necessary and sufficient assertion for the propagation by the
subprogram of one of the exceptions listed, if the program terminates.

4.1.6 Propagation promises

Syntax:

(propagation promise)

-- I raise (exception) [I (exception)...] [=> promise (assertion)];

where the (assertion) is a two-state predicate. Unmodified variables take their
values from the exit state. If the promise clause is omitted that is equivalent
to a promise clause with an (assertion) of true. (This only makes sense in the
case of a subprogram that can raise an exception with completely unspecified
results.) If the subprogram terminates by propagating any of the exceptions
listed, it does so in a state satisfying the (assertion).

The following kinds of Ada variables may appear in the (assertion):

" global parameters

* formal parameters of mode in
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formal parameters of mode in out, but only modified by in

We cannot make general statements about formal parameters of mode in out,
because we mustn't be able to distinguish methods of parameter passing by
looking at the values of in out parameters after exceptional termination. (There
is no difficulty with global parameters, since they are "passed by name" always.)
Verification conditions will be generated whose truth will guarantee that the exit
state satisfies (assertion) whenever the subprogram terminates by propagating
any of the exceptions named.
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4.1.7 Summary of propagation annotations

(In this table we use (assn) for (assertion) in order to save space.)

Annotation Description

-- I raise (list) => promise (assn); Whenever an exception on the list is
propagated, the assertion holds in the
propagating state. The assertion may hold in
the exit state even if none of the exceptions
listed is propagated.

-- I raise (list) => in (assn); Whenever an exception on the list is
propagated, the assertion held in the initial
(calling) state. The assertion may have held
in the initial state even if none of the
exceptions listed is propagated.

-- I in (assn) => raise (list); Whenever the assertion held in the initial
state, the subprogram terminates by
propagating one of the exceptions on the list,
if it terminates at all. The subprogram may

terminate by propagating one of the
exceptions listed even if the assertion did not
hold in the initial state.

-- I in (assn) <=> raise (list); The subprogram terminates by propagating
one of the exceptions on the list if and only
if it terminates and the assertiun held in the
initial state. The subprogram may not
terminate by propagating one of the
exceptions listed if the assertion did not hold
in the initial state, and the assertion must
not have held in the initial state if the
subprogram terminates and none of the
exceptions listed is propagated.

Odyssey Research Associates



26 CHAPTER 4. ANNOTATIONS

4.2 Embedded assertions

The user may strengthen the claims made in a subprogram annotation by us-
ing an embedded assertion. Syntactically, an embedded assertion is a formal
comment, thus:

(embedded assertion) -* -- I (assertion);

where the syntax of (assertion) is outlined in Chapter 2. The embedded
assertion may appear only in the position of a declaration in a declarative part,
or in the position of a statement in a sequence of statements. Such a location
is called a control point. Verification conditions are generated for the program
in which the assertion is embedded. The truth of the verification conditions will
guarantee that, whenever control reaches an embedded assertion, the program
state will satisfy that assertion. The methods of VC generation are given by
Wolfgang Polak [7]. The embedded assertion is a two-state predicate (see above,
Section 2.6).

4.3 Cut point assertions

A cut point assertion is similar to an embedded assertion, but whereas an em-
bedded assertion makes a partial claim about the current state (the assertion
is true in this state), the cut point assertion makes a more total claim. It says
that the truth of the (assertion) at this point follows from the input conditions
of the subprogram and is sufficient to show the exit conditions of the program.
Syntactically, a cut point assertion is a formal comment, thus:

(cut point assertion) - -- I assert (assertion);

where the syntax of (assertion) is outlined in Chapter 2. Cut point assertions
may appear where embedded assertions may appear. A verification condition is
generated for each cut point assertion; its truth will guarantee that that if the
(assertion) holds whenever control reaches that point, then the exit conditions
of the program will be satified when the program terminates. The truth of
the verification conditions generated for the subprogram will guarantee that
whenever control reaches the cut point assertion the program state will satisfy
the (assertion).
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4.4 Annotations of loops

Loop invariants Each loop in an Ada program requires an invaxiant that
summarizes the content of the loop. A verification generation is generated to
guarantee that the invariant is preserved by the loop body. The user may provide
an invariant explicitly using the invariant keyword.

-- I invariant (assertion);

In Larch/Ada the -user can choose whether or not to distinguish a special as-
sertion as a loop invariant. If the user decides not to provide a loop invariant,
the VC generation procedure can synthesize a loop invariant from assertions
embedded in the loop.
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Chapter 5

Very Simple Examples

5.1 A simple example involving a loop

The following example is a simple subprogram that does multiplication by re-
peated addition.

procedure mult (xy : in integer; z: out integer)

-- I where
-- in (x >= 0);
-- I out (z=(x * y));
-- end where

is
u: integer := x;

begin
z := 0;
iter: loop

-- I invariant ((x * y)= (z + (u *y)));

exit iter when (u 0);
u := Cu- 1);
z : (z + y);

end loop;
end mult;
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5.2 Exceptions

We can modify the above example slightly if the subprogram is to terminate
exceptionally when given the "wrong" input data. We use an exact propagation
constraint.

procedure mult(x,y: in integer; z: out integer)

-- I where
-- I out (z=(x * y));
-- I raise input-error <=> (x < 0);

-- I end where
is

u: integer := x;
begin
if (x < 0) then
raise input-error;

end if;
z := 0;
iter: loop

-- I invariant ((x * y)= (z + (u *y)));
exit iter when (u = 0);
u := (u- 1);
z (z + y);

end loop;
end mult;
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Appendix 1

Subset of Ada supported

This appendix informally describes the subset of Ada supported by Penelope at
the time of publication. Many of the features not yet supported by the software
are supported by the theory [7].

1.1 Lexical elements

Identifiers, decimal integer literals and comments are supported. Reals, based
literals, string and character literals and pragmas are not supported.

1.2 Data types

Supported:

" predefined integer and boolean types

* enumeration types

" record types (without variants)

" (constrained) array types

Not supported:

e subtypes
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32 APPENDIX 1. SUBSET OF ADA SUPPORTED

9 access types

a derived types

e renaming declarations

0 number declarations

1.3 Operations and expressions

Supported:

* logical, relational and arithmetic operators on integers

Not supported:

" array slices

" attributes

" aggregates

* short-circuit control forms

* type conversions

" qualified expressions

1.4 Statements

Supported:

* assignment

* if statements

* loops (except for loops)

* block

* exit
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1.5. SUBPROGRAMS 33

* return

Not supported:

* array assignment

* go to

1.5 Subprograms

Supported:

e procedures and functions. Note: there is a conservative requirement to
avoid aliasing. Arguments to subprograms (including implicit or global
arguments) must be pairwise independent. That is, let reads(E) be the
program objects potentially read during evaluation of E and writes(E) be
the program objects potentially written during evaluation of E. Then E1
and E2 are independent if and only if

reads(EI) n writes(E2) = 0 A

writes(El) n reads(E2) = 0 A
writes(EI) n writes(E2) = 0

Thus if swap is a function with two inout parameters and a is an array,
then swap(a(i),a(j)) is not allowed.

* overloading of operators and subprogram names

Not supported:

* default parameters

1.6 Packages

Supported:

* packages

Not supported:

* private and limited types

* deferred constants
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1.7 Exceptions

User-defined exceptions are supported.

1.8 Other

Representation- and implementation-dependent features are not supported. Task-
ing, generics and input-output are not supported.
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